

Commercial Confidential © 2020 Pure BPM Ltd of 1 24

Pure BPM Ltd
Information Security Policy

& Procedure Manual

Policy Frameworks	
3
Web Application Security Policy (WASP)	
4
Server Security Policy (SSP)	
6
Database Credentials Coding Policy (DCCP)	
8
Proactive Protection Plan	
10

Denial of Service Attacks	
10
Common Types of DDoS Attacks	
10
Layered Security Defence	
11
Web Application Firewall (WAF)	
11
OWASP Vulnerability Mitigation	
11
Protecting Against Zero-Day Vulnerabilities	
11
Rate Limiting	
12
Transport Layer Security (TLS)	
12
Data Breach Prevention	
12
Coding Standards	
13
Source Code Control	
14

Testing Protocol	
15
Manual Inspections & Reviews	
15
Threat Modelling	
16
Source Code Review	
16
Penetration Testing	
17
Functional Security Requirements	
18
Risk Driven Security Requirements	
18
Developers’ Security Testing Workflow	
19
Testers’ Security Testing Workflow	
21
Testing Framework	 22

Commercial Confidential © 2020 Pure BPM Ltd of 2 24

Policy Frameworks
For a secure application, the following at a minimum are required:

• Organisational management which champions security

• A written information security policy properly derived from national standards

• A development methodology with adequate security checkpoints and activities

• Secure release and configuration management processes

The policies and procedures herein are in part derived from ISO 27002(17799) and take standards
and controls from COBIT and other respected information security standards (e.g. Sarbanes-
Oxley) and subsidiary best practice guides, such as OWASP.

ISO 27002

ISO 27002 is a risk-based Information Security Management framework directly derived from the
AS/NZS 4444 and BS 7799 standards. It is an international standard used heavily in most
organisations outside the USA.

COBIT

COBIT is a popular risk management framework structured around four domains:

• Planning and organisation

• Acquisition and implementation

• Delivery and support

• Monitoring

Each of the four domains has 13 high level objectives and each high level objective has a number
of detailed objectives.

Commercial Confidential © 2020 Pure BPM Ltd of 3 24

Web Application Security Policy (WASP)
1. Overview

Web application vulnerabilities account for the largest portion of attack vectors outside of
malware. It is crucial that any web application be assessed for vulnerabilities and any
vulnerabilities be remediated prior to production deployment.

2. Purpose

The purpose of this policy is to define web application security assessments within Pure BPM Ltd.
Web application assessments are performed to identify potential or realised weaknesses as a
result of inadvertent mis-configuration, weak authentication, insufficient error handling, sensitive
information leakage, etc. Discovery and subsequent mitigation of these issues will limit the attack
surface of Pure BPM Ltd services available both internally and externally as well as satisfy
compliance with any relevant policies in place.

3. Scope

This policy covers all web application security assessments requested by any individual, group or
department for the purposes of maintaining the security posture, compliance, risk management,
and change control of technologies in use at Pure BPM Ltd.

All web application security assessments will be performed by delegated security personnel either
employed or contracted by Pure BPM Ltd. All findings are considered confidential and are to be
distributed to persons on a “need to know” basis. Distribution of any findings outside of Pure
BPM Ltd is strictly prohibited unless approved by the Directors of the company.

4. Policy

4.1 Security Assessment

Web applications are subject to security assessments based on the following criteria:

• New or Major Application Release – will be subject to a full assessment prior to approval of the

change control documentation and/or release into the live environment.

• Third Party or Acquired Web Application – will be subject to full assessment after which it will be

bound to policy requirements.

• Point Releases – will be subject to an appropriate assessment level based on the risk of the

changes in the application functionality and/or architecture.

• Patch Releases – will be subject to an appropriate assessment level based on the risk of the

changes to the application functionality and/or architecture.

• Emergency Releases – An emergency release will be allowed to forgo security assessments and

carry the assumed risk until such time that a proper assessment can be carried out. Emergency
releases will be designated as such by an appropriate manager who has been delegated this
authority.

Commercial Confidential © 2020 Pure BPM Ltd of 4 24

4.2 Risk Levels

All security issues that are discovered during assessments must be mitigated based upon

the following risk levels. The Risk Levels are based on the OWASP Risk Rating Methodology.
Remediation validation testing will be required to validate fix and/or mitigation strategies for any
discovered issues of Medium risk level or greater:

• High – Any high risk issue must be fixed immediately or other mitigation strategies must be put

in place to limit exposure before deployment. Applications with high risk issues are subject to
being taken off-line or denied release into the live environment.

• Medium – Medium risk issues should be reviewed to determine what is required to mitigate and
scheduled accordingly. Applications with medium risk issues may be taken off-line or denied
release into the live environment based on the number of issues and if multiple issues increase
the risk to an unacceptable level. Issues should be fixed in a patch/point release unless other
mitigation strategies will limit exposure.

• Low – Issue should be reviewed to determine what is required to correct the issue and
scheduled accordingly.

4.3 Security Assessment Levels

The following security assessment levels shall be established:

• Full – A full assessment is comprised of tests for all known web application vulnerabilities using

both automated and manual tools based on the OWASP Testing Guide. A full assessment will
use manual penetration testing techniques to validate discovered vulnerabilities to determine
the overall risk of any and all discovered.

• Quick – A quick assessment will consist of a (typically) automated scan of an application for the
OWASP Top Ten web application security risks at a minimum.

• Targeted – A targeted assessment is performed to verify vulnerability remediation changes or
new application functionality.

Security assessments will be carried out according to the Testing Protocol (See Appendix 5).

5. Policy Compliance

An employee found to have violated this policy may be subject to disciplinary action, up to and

including termination of employment.

A violation of this policy by a temporary worker, contractor or vendor may result in the termination
of their contract or assignment with Pure BPM Ltd.

Web application assessments are a requirement of the change control process and are required to
adhere to this policy unless found to be exempt. All application releases must pass through the
change control process.

Any web applications that do not adhere to this policy may be taken offline until such time that a
formal assessment can be performed at the discretion of the Managing Director. 

Commercial Confidential © 2020 Pure BPM Ltd of 5 24

Server Security Policy (SSP)
1. Overview

Unsecured and vulnerable servers continue to be a major entry point for malicious threat actors.

2. Purpose

The purpose of this policy is to establish standards for the base configuration of internal server
equipment that is owned and/or operated by Pure BPM Ltd. Effective implementation of this
policy will minimise unauthorised access to Pure BPM Ltd proprietary information and technology.

3. Scope

All employees, contractors, consultants, temporary and other workers at Pure BPM Ltd must
adhere to this policy. This policy applies to server equipment that is owned, operated, or leased
by Pure BPM Ltd or registered under a Pure BPM Ltd-owned internal network domain.

This policy specifies requirements for equipment on the internal Pure BPM Ltd network.

4. Policy

For all internal servers deployed at Pure BPM Ltd, the following items must be met:

• Services and applications that will not be used must be disabled where practical.

• Access to services should be logged and/or protected through access-control methods such as

a web application firewall, if possible.

• The most recent security patches must be installed on the system as soon as practical, the only

exception being when immediate application would interfere with business requirements.

• Trust relationships between systems are a security risk, and their use should be avoided.

• Do not use a trust relationship when some other method of communication is sufficient.

• Always use standard security principles of least required access to perform a function.

• Do not use root when a non-privileged account will do.

• If a methodology for secure channel connection is available and technically feasible, privileged

access must be performed over secure channels, (e.g., encrypted network connections using
SSH or IPSec).

• Servers should be physically located in an access-controlled environment.

• Servers are specifically prohibited from operating from uncontrolled cubicle areas.

• All security-related events on critical or sensitive systems must be logged and audit trails saved

as follows:

• All security related logs will be kept online for a minimum of 1 week.

• Daily incremental tape backups will be retained for at least 1 month.

• Weekly full tape backups of logs will be retained for at least 1 month.

• Monthly full backups will be retained for a minimum of 2 years.

• Security-related events will be reported to the Managing Director, who will review logs and
report incidents to Directors. Corrective measures will be prescribed as needed. Security-
related events include, but are not limited to:

Commercial Confidential © 2020 Pure BPM Ltd of 6 24

• Port-scan attacks

• Evidence of unauthorised access to privileged accounts

• Anomalous occurrences that are not related to specific applications on the host.

5. Policy Compliance

An employee found to have violated this policy may be subject to disciplinary action, up to and
including termination of employment.

A violation of this policy by a temporary worker, contractor or vendor may result in the termination
of their contract or assignment with Pure BPM Ltd.

Any program code or application that is found to violate this policy must be remediated within a 3
day period. 

Commercial Confidential © 2020 Pure BPM Ltd of 7 24

Database Credentials Coding Policy (DCCP)
1. Overview

Database authentication credentials are a necessary part of authorising applications to connect to
databases. However, incorrect use, storage and transmission of such credentials could lead to
compromise of very sensitive assets and be a springboard to wider compromise within the
organisation.

2. Purpose

This policy states the requirements for securely storing and retrieving database usernames and
passwords (”database credentials”) for use by an application that will access a database running
on one of Pure BPM Ltd's networks.

Software applications running on Pure BPM Ltd's networks may require access to one or more
database servers. In order to access these databases, a program must authenticate to the
database by presenting acceptable credentials. If the credentials are improperly stored, the
credentials may be compromised leading to a compromise of the database.

3. Scope

This policy is directed at all system implementer and/or software engineers who may be coding
applications that will access a production database server on the Pure BPM Ltd Network. This
policy applies to all software (programs, modules, libraries or APIs that will access a Pure BPM
Ltd, multi-user production database. It is recommended that similar requirements be in place for
non-production servers since they don’t always use sanitised information.

4. Policy

4.1. General

In order to maintain the security of Pure BPM Ltd's internal databases, access by software
programs must be granted only after authentication with credentials. The credentials used for this
authentication must not reside in the main, executing body of the program's source code in clear
text. Database credentials must not be stored in a location that can be accessed through a web
server.

4.2. Specific Requirements

Storage of Data Base User Names and Passwords:

• Database user names and passwords may be stored in a file separate from the executing body
of the program's code. This file must not be world readable or writeable.

Commercial Confidential © 2020 Pure BPM Ltd of 8 24

• Database credentials may reside on the database server. In this case, a hash function number
identifying the credentials may be stored in the executing body of the program’s code.

• Database credentials may be stored as part of an authentication server (i.e., an entitlement
directory), such as an LDAP server used for user authentication. Database authentication may
occur on behalf of a program as part of the user authentication process at the authentication
server. In this case, there is no need for programmatic use of database credentials.

• Database credentials may not reside in the documents tree of a web server.

• Pass through authentication must not allow access to the database based solely upon a remote

user's authentication on the remote host.

• Passwords or pass phrases used to access a database must adhere to the Password Policy.

Retrieval of Database User Names and Passwords:

• If stored in a file that is not source code, then database user names and passwords must be
read from the file immediately prior to use. Immediately following database authentication, the
memory containing the user name and password must be released or cleared.

• The scope into which database credentials may be stored must be physically separated from
the other areas of code, e.g., the credentials must be in a separate source file. The file that
contains the credentials must contain no other code but the credentials (i.e., the user name and
password) and any functions, routines, or methods that will be used to access the credentials.

• For languages that execute from source code, the credentials' source file must not reside in the
same browseable or executable file directory tree in which the executing body of code resides.

Access to Database User Names and Passwords:

• Every program or every collection of programs implementing a single business function must
have unique database credentials. Sharing of credentials between programs is not allowed.

• Database passwords used by programs are system-level passwords as defined by the
Password Policy.

• Developer groups must have a process in place to ensure that database passwords are
controlled and changed in accordance with the Password Policy. This process must include a
method for restricting knowledge of database passwords to a need-to-know basis.

5. Policy Compliance

An employee found to have violated this policy may be subject to disciplinary action, up to and
including termination of employment.

A violation of this policy by a temporary worker, contractor or vendor may result in the termination
of their contract or assignment with Pure BPM Ltd.

Any program code or application that is found to violate this policy must be remediated within a 3
day period. 

Commercial Confidential © 2020 Pure BPM Ltd of 9 24

Proactive Protection Plan

Denial of Service Attacks
Distributed Denial of Service (DDoS) attacks continue to grow in sophistication and force: more
distributed, greater volumes of traffic, and encroaching on the application layer. To combat
attacks and stay online a solution that is resilient scalable, and intelligent is required. Current
network capacity is 15x bigger than the largest DDoS attack ever recorded. With 30 Tbps of
capacity, it can handle any modern distributed attack, including those targeting DNS
infrastructure. Shared network intelligence uses an IP reputation database to proactively identify
and blocks new and evolving threats.

Common Types of DDoS Attacks

DNS Flood
By disrupting DNS
resolution, a DNS flood
attack will make a
website, API, or web
application non-
performant or completely
unavailable.

UDP Amplification
An attacker leverages the
functionality of open DNS
or NTP resolvers to
overwhelm a target server
or network with amplified
request traffic, where the
payload size is greater
than the size of an
originating request.

HTTP Flood
HTTP flood attacks
generate high volumes of
HTTP, GET, or POST
requests from multiple
sources, targeting the
application layer, causing
service degradation or
unavailability.

Commercial Confidential © 2020 Pure BPM Ltd of 10 24

Layered Security Defence
A layered security approach combines multiple DDoS mitigation capabilities into one. It prevents
disruptions caused by bad traffic, while allowing good traffic through, keeping websites,
applications and APIs highly available and performant.

Web Application Firewall (WAF)
The enterprise-class web application firewall (WAF) protects applications from common
vulnerabilities such as SQL injection attacks, cross-site scripting, and cross-site forgery requests.

OWASP Vulnerability Mitigation
The WAF automatically protects applications from the OWASP top 10 vulnerabilities:

1. Injection

2. Broken Authentication and Session Management

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialisation

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

Protecting Against Zero-Day Vulnerabilities
Security engineers constantly monitor the Internet for new vulnerabilities. When relevant threats
are found, WAF rules are automatically applied.

Granular firewall rules are applied in order to stop emerging and sophisticated threats. Rules are
based upon multiple request attributes such as user-agent, path, country, query string and IP
address.

Commercial Confidential © 2020 Pure BPM Ltd of 11 24

Rate Limiting
Rate Limiting protects against brute-force login attempts and other types of abusive behaviour
targeting the application layer. For example, API usage limits are set to ensure availability and
protect against abuse and sensitive customer information is protected against brute force login
attacks.

Transport Layer Security (TLS)
All applications are served over HTTPS, encrypting traffic with SSL to ensure nobody can snoop
on users’ data.

All HTTPS traffic is served over either TLS 1.2 or 1.3, as required by PCI 3.2 compliance due to
known vulnerabilities in all earlier versions of TLS and SSL.

TLS Client Auth creates a secure connection between a client and its origin. When a client
attempts to establish a connection with its origin server, the device’s certificate is validated to
check it has authorised access to the endpoint. If the device has a valid client certificate, the
device is able to establish a secure connection. If the device’s certificate is missing, expired, or
invalid, the connection is revoked and a 403 error is returned.

All applications support the HTTP Strict Transport Security (HSTS) protocol that forces clients to
use secure connections for every request to the origin server.

Automatic HTTPS Rewrites safely eliminate mixed content issues while enhancing performance
and security by rewriting insecure URLs dynamically to their secure counterpart.

Encrypted SNI replaces the plaintext “server_name” extension used in the ClientHello message
during TLS negotiation with an “encrypted_server_name.” This capability expands on TLS 1.3,
increasing the privacy of users by concealing the destination hostname from intermediaries
between the visitor and website.

DNSSEC guarantees the applications’ traffic is safely routed to the correct servers so that users
cannot be intercepted by a hidden “man-in-the-middle” attacker.

Data Breach Prevention
A data compromise can result in the leak of customers’ sensitive personally identifiable
information (PII) from an application's data store. Attackers often use several attack vectors when
attempting to compromise customer data, such as DNS spoofing, snooping of data in transit,
brute force login attempts, or malicious payload exploits. For example:

DNS Spoofing

A compromised DNS record, or “poisoned cache”, can return a malicious answer from the DNS
server, sending an unsuspecting visitor to an attacker's website. This enables attackers to steal
user credentials and take ownership of legitimate accounts.

Commercial Confidential © 2020 Pure BPM Ltd of 12 24

DNSSEC verifies DNS records using cryptographic signatures. By checking the signature
associated with a record, DNS resolvers can verify that the requested information comes from its
authoritative name server and not a man-in-the-middle attacker.

Snooping of Data In-Transit

Attackers can intercept or “snoop” on unencrypted customer sessions to steal sensitive customer
data, including credentials such as passwords or credit-cards numbers.

Fast SSL / TLS encryption and support for the latest security standards enable the secure
transmission of sensitive customer data without fear of exposure.

Brute Force Login Attempts

Attackers can wage “dictionary attacks” by automating logins with dumped credentials to brute
force their way through a login-protected page.

Rate Limiting detects and blocks hard-to-detect attacks at the network edge, defined by custom
rules that set request thresholds, timeout periods, and response codes.

Malicious Payload Exploits

Attackers can exploit application vulnerabilities though malicious payloads. The most common
forms include SQL injections, cross-site scripting, and remote file inclusions. Each of these can
expose sensitive data by running malicious code on applications.

Web Application Firewall (WAF) rulesets automatically filter out illegitimate traffic targeting the
application layer, including GET and POST-based HTTP requests.

Coding Standards
All Developers working on the business’ applications must adhere to the coding standards
defined, which have been based upon known best practices and include:

• Architectural guidance

• Minimum documentation levels required

• Mandatory testing and coverage requirements

• Minimum levels of code commenting and the preferred comment style

• Proper use of exception handling

• Correct use of flow of control blocks

• Preferred variable, function, class, and table naming styles

• A preference for maintainable and readable code over clever or complex code

Commercial Confidential © 2020 Pure BPM Ltd of 13 24

https://www.cloudflare.com/dns/dnssec/
https://www.cloudflare.com/dns/
https://www.cloudflare.com/ssl/

Source Code Control
High performance software engineering requires the use of regular improvements to code, along
with associated testing regimes. All code and test changes must be able to be versioned and
capable of being reverted.

This is performed by source code revision tools, such as GIT.

Tests must be included with a software revision because tests for later builds will not necessarily
match the tests required for earlier builds. So, it is vital that a test is applied to the build for which
it was intended. 

Commercial Confidential © 2020 Pure BPM Ltd of 14 24

Testing Protocol
Security is an integral part of the development process. The Software Development Life Cycle
(SDLC) must therefore include security tests to ensure security is adequately covered and controls
are effective throughout the development process.

Developers should use this guide to ensure that they are producing secure code. These tests
should be a part of normal code and unit testing procedures.

Software testers should use this guide to expand the set of test cases they apply to applications.
Catching these vulnerabilities early saves considerable time and effort later.

Security specialists should use this guide in combination with other techniques as one way to
verify that no security holes have been missed in an application.

Manual Inspections & Reviews
Manual inspections are human-driven reviews that typically test the security implications of the
people, policies, and processes, but can include inspection of technology decisions such as
architectural designs. They are usually conducted by analysing documentation or performing
interviews with the designers or system owners. While the concept of manual inspections and
human reviews is simple, they can be among the most powerful and effective techniques
available. By asking someone how something works and why it was implemented in a specific
way, it allows the tester to quickly determine if any security concerns are likely to be evident.
Manual inspections and reviews are one of the few ways to test the software development life-
cycle process itself and to ensure that there is an adequate policy or skill set in place. As with
many things in life, when conducting manual inspections and reviews we suggest you adopt a
trust-but-verify model. Not everything everyone tells you or shows you will be accurate. Manual
reviews are particularly good for testing whether people understand the security process, have
been made aware of policy, and have the appropriate skills to design or implement a secure
application. Other activities, including manually reviewing the documentation, secure coding
policies, security requirements, and architectural designs, should all be accomplished using
manual inspections.

Advantages:

• Requires no supporting technology

• Can be applied to a variety of situations

• Flexible

• Promotes teamwork

• Early in the SDLC

Disadvantages:

• Can be time consuming

• Supporting material not always available

• Requires significant human thought and skill to be effective

Commercial Confidential © 2020 Pure BPM Ltd of 15 24

Threat Modelling
Threat modelling has become a popular technique to help system designers think about the
security threats that their systems/applications might face. Therefore, threat modelling can be
seen as risk assessment for applications. In fact, it enables the designer to develop mitigation
strategies for potential vulnerabilities and helps them focus their inevitably limited resources and
attention on the parts of the system that most require it. It is recommended that all applications
have a threat model developed and documented. Threat models should be created as early as
possible in the SDLC, and should be revisited as the application evolves and development
progresses. This approach involves:

• Decomposing the application – understand, through a process of manual inspection, how the
application works, its assets, functionality, and connectivity.

• Defining and classifying the assets – classify the assets into tangible and intangible assets and
rank them according to business importance.

• Exploring potential vulnerabilities - whether technical, operational, or management.

• Exploring potential threats – develop a realistic view of potential attack vectors from an

attacker’s perspective, by using threat scenarios or attack trees.

• Creating mitigation strategies – develop mitigating controls for each of the threats deemed to be

realistic.

Advantages:

• Practical attacker's view of the system

• Flexible

• Early in the SDLC

Disadvantages:

• Relatively new technique

• Good threat models don’t automatically mean good software

Source Code Review
Source code review is the process of manually checking a web application's source code for
security issues. Many serious security vulnerabilities cannot be detected with any other form of
analysis or testing. As the popular saying goes “if you want to know what’s really going on, go
straight to the source." Almost all security experts agree that there is no substitute for actually
looking at the code. All the information for identifying security problems is there in the code
somewhere. Unlike testing third party closed software such as operating systems, when testing
web applications (especially if they have been developed in-house) the source code should be
made available for testing purposes. Many unintentional but significant security problems are also
extremely difficult to discover with other forms of analysis or testing, such as penetration testing,
making source code analysis the technique of choice for technical testing. With the source code,
a tester can accurately determine what is happening (or is supposed to be happening) and
remove the guess work of black box testing. Examples of issues that are particularly conducive to
being found through source code reviews include concurrency problems, flawed business logic,
access control problems, and cryptographic weaknesses as well as backdoors, Trojans, Easter
eggs, time bombs, logic bombs, and other forms of malicious code. These issues often manifest

Commercial Confidential © 2020 Pure BPM Ltd of 16 24

themselves as the most harmful vulnerabilities in web sites. Source code analysis can also be
extremely efficient to find implementation issues such as places where input validation was not
performed or when fail open control procedures may be present. But keep in mind that
operational procedures need to be reviewed as well, since the source code being deployed might
not be the same as the one being analysed therein.

Advantages:

• Completeness and effectiveness

• Accuracy

• Fast (for competent reviewers)

Disadvantages:

• Requires highly skilled security developers

• Can miss issues in compiled libraries

• Cannot detect run-time errors easily

• The source code actually deployed might differ from the one being analysed

Penetration Testing
Penetration testing has been a common technique used to test network security for many years. It
is also commonly known as black box testing or ethical hacking. Penetration testing is essentially
the “art” of testing a running application remotely, without knowing the inner workings of the
application itself, to find security vulnerabilities. Typically, the penetration test team would have
access to an application as if they were users. The tester acts like an attacker and attempts to
find and exploit vulnerabilities. In many cases the tester will be given a valid account on the
system. While penetration testing has proven to be effective in network security, the technique
does not naturally translate to applications. When penetration testing is performed on networks
and operating systems, the majority of the work is involved in finding and then exploiting known
vulnerabilities in specific technologies. As web applications are almost exclusively bespoke,
penetration testing in the web application arena is more akin to pure research. Penetration testing
tools have been developed that automate the process, but, again, with the nature of web
applications their effectiveness is usually poor. Many people today use web application
penetration testing as their primary security testing technique. Whilst it certainly has its place in a
testing program, we do not believe it should be considered as the primary or only testing
technique. Gary McGraw in summed up penetration testing well when he said, “If you fail a
penetration test you know you have a very bad problem indeed. If you pass a penetration test you
do not know that you don’t have a very bad problem”. However, focused penetration testing (i.e.,
testing that attempts to exploit known vulnerabilities detected in previous reviews) can be useful
in detecting if some specific vulnerabilities are actually fixed in the source code deployed.

Advantages:

• Can be fast (and therefore cheap)

• Requires a relatively lower skill-set than source code review

• Tests the code that is actually being exposed

Disadvantages:

• Too late in the SDLC

Commercial Confidential © 2020 Pure BPM Ltd of 17 24

• Front impact testing only

Functional Security Requirements
From the perspective of functional security requirements, the applicable standards, policies and
regulations drive both the need of a type of security control as well as the control functionality.
These requirements are also referred to as “positive requirements”, since they state the expected
functionality that can be validated through security tests. Examples of positive requirements are:
“the application will lockout the user after six failed logon attempts” or “passwords need to be six
min characters, alphanumeric”. The validation of positive requirements consists of asserting the
expected functionality and, as such, can be tested by re-creating the testing conditions, and by
running the test according to predefined inputs and by asserting the expected outcome as a fail/
pass condition.

In order to validate security requirements with security tests, security requirements need to be
function driven and highlight the expected functionality (the what) and implicitly the
implementation (the how). Examples of high-level security design requirements for authentication
can be:

• Protect user credentials and shared secrets in transit and in storage

• Mask any confidential data in display (e.g., passwords, accounts)

• Lock the user account after a certain number of failed login attempts

• Do not show specific validation errors to the user as a result of failed logon

• Only allow passwords that are alphanumeric, include special characters and six characters

minimum length, to limit the attack surface

• Allow for password change functionality only to authenticated users by validating the old

password, the new password, and the user answer to the challenge question, to prevent brute
forcing of a password via password change.

• The password reset form should validate the user’s username and the user’s registered email
before sending the temporary password to the user via email. The temporary password issued
should be a one time password. A link to the password reset web page will be sent to the user.
The password reset web page should validate the user temporary password, the new password,
as well as the user answer to the challenge question.

Risk Driven Security Requirements
Security tests need also to be risk driven, that is they need to validate the application for
unexpected behaviour. These are also called “negative requirements”, since they specify what the
application should not do. Examples of "should not do" (negative) requirements are:

• The application should not allow for the data to be altered or destroyed

• The application should not be compromised or misused for unauthorised financial transactions

by a malicious user.

Negative requirements are more difficult to test, because there is no expected behaviour to look
for. This might require a threat analyst to come up with unforeseeable input conditions, causes,

Commercial Confidential © 2020 Pure BPM Ltd of 18 24

and effects. This is where security testing needs to be driven by risk analysis and threat
modelling.

The key is to document the threat scenarios and the functionality of the countermeasure as a
factor to mitigate a threat. For example, in case of authentication controls, the following security
requirements can be documented from the threats and countermeasure perspective:

• Encrypt authentication data in storage and transit to mitigate risk of information disclosure and
authentication protocol attacks

• Encrypt passwords using non reversible encryption such as using a digest (e.g., HASH) and a
seed to prevent dictionary attacks

• Lock out accounts after reaching a logon failure threshold and enforce password complexity to
mitigate risk of brute force password attacks

• Display generic error messages upon validation of credentials to mitigate risk of account
harvesting/enumeration

• Mutually authenticate client and server to prevent non-repudiation and Man In the Middle
(MiTM) attacks

Developers’ Security Testing Workflow
Security testing during the development phase of the SDLC represents the first opportunity for
developers to ensure that individual software components that they have developed are security
tested before they are integrated with other components and built into the application. Software
components might consist of software artefacts such as functions, methods, and classes, as well
as application programming interfaces, libraries, and executables. For security testing, developers
can rely on the results of the source code analysis to verify statically that the developed source
code does not include potential vulnerabilities and is compliant with the secure coding standards.
Security unit tests can further verify dynamically (i.e., at run time) that the components function as
expected. Before integrating both new and existing code changes in the application build, the
results of the static and dynamic analysis should be reviewed and validated. The validation of
source code before integration in application builds is usually the responsibility of the senior
developer. Such senior developer is also the subject matter expert in software security and his
role is to lead the secure code review and make decisions whether to accept the code to be
released in the application build or to require further changes and testing. This secure code review
workflow can be enforced via formal acceptance as well as a check in a workflow management
tool. For example, assuming the typical defect management workflow used for functional bugs,
security bugs that have been fixed by a developer can be reported on a defect or change
management system. The build master can look at the test results reported by the developers in
the tool and grant approvals for checking in the code changes into the application build.

From the developer’s perspective, the main objective of security tests is to validate that code is
being developed in compliance with secure coding standards requirements. Developers' own
coding artefacts such as functions, methods, classes, APIs, and libraries need to be functionally
validated before being integrated into the application build.

The security requirements that developers have to follow should be documented in secure coding
standards and validated with static and dynamic analysis. As testing activity following a secure
code review, unit tests can validate that code changes required by secure code reviews are

Commercial Confidential © 2020 Pure BPM Ltd of 19 24

properly implemented. Secure code reviews and source code analysis through source code
analysis tools help developers in identifying security issues in source code as it is developed. By
using unit tests and dynamic analysis (e.g., debugging) developers can validate the security
functionality of components as well as verify that the countermeasures being developed mitigate
any security risks previously identified through threat modelling and source code analysis.

A good practice for developers is to build security test cases as a generic security test suite that
is part of the existing unit testing framework. A generic security test suite could be derived from
previously defined use and misuse cases to security test functions, methods and classes. A
generic security test suite might include security test cases to validate both positive and negative
requirements for security controls such as:

• Authentication & Access Control

• Input Validation & Encoding

• Encryption

• User and Session Management

• Error and Exception Handling

• Auditing and Logging

Developers empowered with a source code analysis tool integrated into their IDE, secure coding
standards, and a security unit testing framework can assess and verify the security of the
software components being developed. Security test cases can be run to identify potential
security issues that have root causes in source code: besides input and output validation of
parameters entering and exiting the components, these issues include authentication and
authorisation checks done by the component, protection of the data within the component,
secure exception and error handling, and secure auditing and logging. Unit test frameworks such
as Junit, Nunit, CUnit can be adapted to verify security test requirements. In the case of security
functional tests, unit level tests can test the functionality of security controls at the software
component level, such as functions, methods, or classes. For example, a test case could validate
input and output validation (e.g., variable sanitisation) and boundary checks for variables by
asserting the expected functionality of the component.

The threat scenarios identified with use and misuse cases, can be used to document the
procedures for testing software components. In the case of authentication components, for
example, security unit tests can assert the functionality of setting an account lockout as well as
the fact that user input parameters cannot be abused to bypass the account lockout (e.g., by
setting the account lockout counter to a negative number). At the component level, security unit
tests can validate positive assertions as well as negative assertions, such as errors and exception
handling. Exceptions should be caught without leaving the system in an insecure state, such as
potential denial of service caused by resources not being deallocated (e.g., connection handles
not closed within a final statement block), as well as potential elevation of privileges (e.g., higher
privileges acquired before the exception is thrown and not re-set to the previous level before
exiting the function). Secure error handling can validate potential information disclosure via
informative error messages and stack traces.

Source code analysis and unit tests can validate that the code change mitigates the vulnerability
exposed by the previously identified coding defect. The results of automated secure code

Commercial Confidential © 2020 Pure BPM Ltd of 20 24

analysis can also be used as automatic check-in gates for version control: software artefacts
cannot be checked into the build with high or medium severity coding issues.

Testers’ Security Testing Workflow
After components and code changes are tested by developers and checked in to the application
build, the most likely next step in the software development process workflow is to perform tests
on the application as a whole entity. This level of testing is usually referred to as integrated test
and system level test. When security tests are part of these testing activities, they can be used to
validate both the security functionality of the application as a whole, as well as the exposure to
application level vulnerabilities. These security tests on the application include both white box
testing, such as source code analysis, and black box testing, such as penetration testing. Grey
box testing is similar to Black box testing. In a grey box testing we can assume we have some
partial knowledge about the session management of our application, and that should help us in
understanding whether the logout and timeout functions are properly secured.

The target for the security tests is the complete system that is the artefact that will be potentially
attacked and includes both whole source code and the executable. One peculiarity of security
testing during this phase is that it is possible for security testers to determine whether
vulnerabilities can be exploited and expose the application to real risks. These include common
web application vulnerabilities, as well as security issues that have been identified earlier in the
SDLC with other activities such as threat modelling, source code analysis, and secure code
reviews.

Usually, testing engineers, rather than software developers, perform security tests when the
application is in scope for integration system tests. Such testing engineers have security
knowledge of web application vulnerabilities, black box and white box security testing techniques,
and own the validation of security requirements in this phase. In order to perform such security
tests, it is a pre-requisite that security test cases are documented in the security testing guidelines
and procedures.

The main objective of integrated system tests is to validate the “defence in depth” concept, that
is, that the implementation of security controls provides security at different layers. For example,
the lack of input validation when calling a component integrated with the application is often a
factor that can be tested with integration testing.

The integration system test environment is also the first environment where testers can simulate
real attack scenarios as can be potentially executed by a malicious, external or internal user of the
application. Security testing at this level can validate whether vulnerabilities are real and can be
exploited by attackers. For example, a potential vulnerability found in source code can be rated as
high risk because of the exposure to potential malicious users, as well as because of the potential
impact (e.g., access to confidential information). Real attack scenarios can be tested with both
manual testing techniques and penetration testing tools. Security tests of this type are also
referred to as ethical hacking tests. From the security testing perspective, these are risk driven
tests and have the objective to test the application in the operational environment. The target is
the application build that is representative of the version of the application being deployed into
production.

Commercial Confidential © 2020 Pure BPM Ltd of 21 24

The next level of security testing after integration system tests is to perform security tests in the
user acceptance environment. There are unique advantages to performing security tests in the
operational environment. The user acceptance tests environment (UAT) is the one that is most
representative of the release configuration, with the exception of the data (e.g., test data is used in
place of real data). A characteristic of security testing in UAT is testing for security configuration
issues. In some cases these vulnerabilities might represent high risks. For example, the server that
hosts the web application might not be configured with minimum privileges, valid SSL certificate
and secure configuration, essential services disabled and web root directory not cleaned from test
and administration web pages.

Testing Framework

Pre-Development

Before application development has started:

• Test to ensure that there is an adequate SDLC where security is inherent

• Test to ensure that the appropriate policy and standards are in place for the development team

• Develop the metrics and measurement criteria

• Ensure that there are appropriate policies, standards, and documentation in place.

During Definition & Design

Security requirements define how an application works from a security perspective. It is essential
that the security requirements be tested. Testing in this case means testing the assumptions that
are made in the requirements, and testing to see if there are gaps in the requirements definitions.

Ensure that requirements are as unambiguous as possible.

When looking for requirements gaps, consider looking at security mechanisms such as:

• User Management (password reset etc.)

• Authentication

• Authorisation

• Data Confidentiality

• Integrity

• Accountability

• Session Management

• Transport Security

• Tiered System Segregation

• Privacy

Identifying security flaws in the design phase is not only one of the most cost-efficient places to
identify flaws, but can be one of the most effective places to make changes.

Undertake a threat modelling exercise. Develop realistic threat scenarios. Analyse the design and
architecture to ensure that these threats have been mitigated, accepted by the business, or

Commercial Confidential © 2020 Pure BPM Ltd of 22 24

assigned to a third party, such as an insurance firm. When identified threats have no mitigation
strategies, revisit the design and architecture with the systems architect to modify the design.

During Development

Theoretically, development is the implementation of a design. However, in the real world, many
design decisions are made during code development. These are often smaller decisions that were
either too detailed to be described in the design, or in other cases, issues where no policy or
standard guidance was offered. If the design and architecture were not adequate, the developer
will be faced with many decisions. If there were insufficient policies and standards, the developer
will be faced with even more decisions.

A code walkthrough (a high-level walkthrough of the code where the developers can explain the
logic and flow of the implemented code) should be completed. It allows the code review team to
obtain a general understanding of the code, and allows the developers to explain why certain
things were developed the way they were.

The purpose is not to perform a code review, but to understand at a high level the flow, the layout,
and the structure of the code that makes up the application.

Armed with a good understanding of how the code is structured and why certain things were
coded the way they were, the tester can now examine the actual code for security defects.

Static code reviews validate the code against a set of checklists, including:

• Business requirements for availability, confidentiality, and integrity.

• OWASP Guide or Top 10 Checklists for technical exposures.

• Specific issues relating to the language or framework in use.

• Any industry specific requirements.

During Deployment

Having tested the requirements, analysed the design, and performed code review, it might be
assumed that all issues have been caught. Hopefully, this is the case, but penetration testing the
application after it has been deployed provides a last check to ensure that nothing has been
missed.

The application penetration test should include the checking of how the infrastructure was
deployed and secured. While the application may be secure, a small aspect of the configuration
could still be at a default install stage and vulnerable to exploitation.

During Maintenance & Operations

Monthly or quarterly health checks should be performed on both the application and infrastructure
to ensure no new security risks have been introduced and that the level of security is still intact.

Commercial Confidential © 2020 Pure BPM Ltd of 23 24

After every change has been approved and tested in the QA environment and deployed into the
production environment, it is vital that, as part of the change management process, the change is
checked to ensure that the level of security hasn’t been affected by the change.

While care has been taken to ensure that the information herein is accurate and comprehensive, Pure BPM Ltd gives no warranty to
that effect and accepts no responsibility or liability for errors or omissions therein. No part of this document may be reproduced
without permission from the copyright holder.

Commercial Confidential © 2020 Pure BPM Ltd of 24 24

